NMR Structure in methanol of a -hexapeptide with a disulfide clampT
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A disulfide bridge between two cysteine side chains on amino
acid residue 2 and 5 of a 3-hexapeptide fixes the 314-helical
structure, as shown by a 2D-NMR investigation.

Oligomers of 3-amino acids ([3-peptides) have made their debut
as a promising class of peptide analogues: with short chain
length they fold into well-ordered secondary structures such as
helices, turns and sheets.! Their great structural diversity,
together with the finding that (-peptides are resistant to
degradation by peptidases,2 renders them candidates for
pharmaceutical applications.® The 3-peptides built from homo-
logated «-amino acids* form a left handed 34-helix with the
side chains of amino acid residuei and i + 3 in juxtapositions.s
Introduction of a conformational constraint by covalently
linking HS-CHo-groups in the aforementioned positions,
forming a disulfide bridge, is expected to stabilise the helix,
whereas a linkage between residuei and i + 4 will enforce new
backbone conformations (Fig. 1). To demonstrate this, f3-
peptides with cysteine side chainsin position i,ig;®ig, ig + 3, ip,
ig + 4 (Fig. 2) were synthesised and their CD spectra recorded
(Fig. 3).7

It has been established by numerous CD measurements and
corresponding NMR-structural investigations of 3-peptidesthat
a CD pattern exhibiting atrough at ca. 216 nm and a peak at ca.
198 nm is characteristic of a 314-helix with (M)-chirality.8 The
CD spectra of cysteine-containing 33-hexapeptides 1 and 2 as
well as of heptapeptide 4 exhibit a pattern typica for a
314-helical structurein MeOH whereby compound 1, the cyclic
hexapeptide, shows a small blue shift of the Cotton effect at
longer wavelength. 3-Peptide 3, which would be expected not to
beabletofoldinto a3,4-helix showsadifferent CD pattern with
atrough at 200 nm.

Fig. 1 Schematic presentation of a f3-peptidic 3;4-helix. At each tetragonal
carbon in the chain there is alateral (perpendicular to the helix axis) and
an axial position (‘alowed’ only for hydrogens).5 A cystinic disulfide
bridge (CH-S-S—CH),) is possible between lateral positionsio—ig, ig-ig +
3, but not iﬁ—iﬁ + 4,

T Electronic supplementary information (ESI) available: NMR spectros-
copy of hexapeptide 1 and heptapeptide 3. See http://www.rsc.org/
suppdata/cc/b0/b007503p/

DOI: 10.1039/b007503p

These observationsled usto examining 3-peptides 1 and 3 by
means of high-resolution NMR techniques. 2D-NMR Studies
were carried out on a 500 MHz spectrometer with solutions in
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Fig. 2 Formulae 14 of the cyclic and linear f-hexa- and heptapeptides’
included in the present NMR investigation.
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Fig. 3 CD Spectra of the four B-peptidesin MeOH. A trough near 215 nm
is considered characteristic of an (M) 314-helical structure (see CD of 1, 2,
4). The macrocyclic (3-heptapeptidic disulfide 3 with a linkage between
residues 2 and 6 shows a completely different CD pattern.”
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Fig. 4 Views along and perpendicular to the (M) 3;4-helix of an overlay of
20 lowest-energy structures obtained by simulated annealing, using NMR
dihedral-angles and NOE-distance restraints with the XPLOR pro-
gramme.

CD3OH. DQF-COSY and TOCSY techniques were used to
assign all *H resonancesin their respective spin systems. HSQC
and HMBC experiments |ed to the assignment of the sequence.
From the large 3J(NH; C(B)-H) coupling constants it can be
concluded that the NH and C(f)-H protons are in an
antiperiplanar arrangement. The diastereotopic CHx(«) protons
were assigned assuming that the axial protons(cf. Fig. 1) exhibit
alarge and the lateral a small coupling with C(f3), which isin
agreement with stronger NOEs from H—C(f3) to the lateral H—
C(«) protons than to the axial H-C(«) protons. ROESY spectra
of 1 and 2 at different mixing times were acquired and NOEs
were extracted from spectra with mixing time of 150 ms.
Qualitative analysis of the ROESY data obtained for (-
hexapeptide 1 indicated that the 314-helical conformation is
predominant, since the typical NOE correlations persisted,
while data for 3 do not correspond to a 314-helix. A total of 62
NOEs of compound 1 were extracted and then classified
according to their relative volume in the contour plot in three
distance categories with the following upper bound distance
limits: strong <3.0 A, medium <35 A and weak <4.5 A.
These distance restraints were used together with 5 NH, C()—H
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dihedral anglerestraints, derived from the coupling constants, in
simulated annealing, following the XPLOR protocol. This
calculation yielded a set of 25 structures with low restraint
violation, of which 20 structures with minimum energy are
depicted in Fig. 4. The structures show aleft-handed helix with
14-membered hydrogen-bonded rings from NH of residue 2 to
C=0 of residue 4 and from NH of residue 3 to C=0O of residue
5. Thedisulfide unit R-S-S-Rin the 17-membered macrocyclic
ring of 1 has (P)-chirality. Due to the conformational restraints
imposed by the disulfide bond the helix formed by 1 is slightly
twisted with the side chains being offset from one another,
rather than on top of each other asin anidealised 3,4-helix and
as in numerous real 3;4-helices published so far.5:9
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